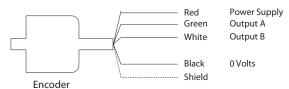
CE SERIES

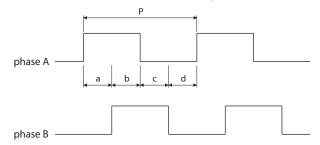
INCREMENTAL ROTARY ENCODER

Outside Diameter 30mm (Shaft ϕ 4) PCD 22 Economical Voltage output type Suitable for General or Industrial Applications

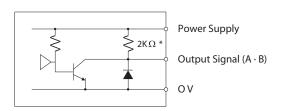

Service Control of the Control of th

STANDARD MODELS

Serial Number	CE (30φ)
60	CE - 60
100	CE - 100
200	CE - 200
250	Discontinued CE - 250
300	CE - 300
360	CE - 360
400	CE - 400
500	CE - 500


Add "S" at the end of Model No. for 1 signal output (only signal A). ex. CE-100S

CONNECTIONS



OUTPUT WAVEFORM

clockwise rotation when viewed from the top of the shaft.

OUTPUT WIRING

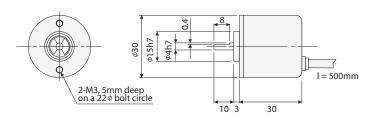
HANDLING GUIDE

- To protect an encoder from any shock or vibration that may be caused by the joining machine, put the center of encoder's shaft and machine's shaft together without aberration and inclination. Use our coupling models for the right joining.
- Be sure to wire the encoder correctly as a wrong wiring may cause the inner circuit breakdown.
- Do not wire the cable parallel with other power lines from the protection against the noise.
- Use a shield wire for the extension of cable.

SPECIFICATIONS

		CE
Electrical	Power Supply	5 - 12V DC ±5%
	Output Signal	Voltage / 90° Quadrature x 2 Signals
	Output Voltage	Logic 1 = 4 to 11 VDC (Reduced -1V from Power Supply) Logic 0 = 0.5 VDC or less
	Maximum Response	60 KHz
ect	Current Consumption	40 mA maximum
	Sink Current	20 mA maximum
	Output Impedance	2 Κ Ω
	Operating Temperature	-10°C - +70°C
	Maximum Speed of	6,000 rpm
	Shaft Input	
	Maximum of Inertia	2g-cm² Maximum
	of Shaft	
Ca	Starting Torque	10gf-cm Maximum
Jan	Angular Speed	1 x 10 ⁵ rad / sec ²
Mechanical	Maximum Radial Loading	1 Kg
_	Maximum Thrust Loading	0.5 Kg
	Vibration	10Hz to 50Hz · 1.5mm·2h
	Shock	50 G / 11 ms
	Weight (Approximately)	100 grams

· Signal A and Signal B are 90° quadrature


$$P = \frac{1}{PPR}$$

 $\cdot \ \mathsf{Accuracy}$

$$a \cdot b \cdot c \cdot d = \frac{P}{4} \pm \frac{P}{8}$$

$$h = P \pm \frac{P}{2}$$

DIMENSIONS

LINE SEIKI CO., LTD

37-7, Chuo-Cho, 2-Chome, Meguro-ku Tokyo, JAPAN 152-0001 Please visit our company website for contact details E-MAIL: webtrade@line.co.jp URL: https://www.lineseiki.com