F90 Series (Rate Indicators / Controllers) INSTRUCTION MANUAL

FEATURES

DIN 48 ' 96 mm

DIN 48 ' 96 mm Standard
Panel Size

Monitor \& Preset Type

1. Monitor type with the large display
2. Preset Type can make the upper/lower limit output.

Decimal Point Positioning

By selecting the decimal point position, it can display the measured data below the decimal point.
$1 /$ TAU

High precision, from low speed to high speed by $1 / T A U$.
Measuring range is $0.11 \mathrm{~Hz} \sim 20 \mathrm{kHz}$.

Input

Correspond to each input mode of Contact, Open Collector, Voltage and Magnetic Sensor
Up-Date Time

Up-date time can be set regardless of
sampling time.

Prescale

Multiplier and divider combinable, correspond to any revolution ratio and circumference ratio.

Discontinued Analog Output
 Analog output available as an option

Key Lock and Output Inhibition

By easy wirings, key lock (front key operation lock) and output inhibition are available.

MODELS

MODEL	FUNCTION	NUMBER OF DIGITS	SETTING DIGITS	ADDED FUNCTION
F90-101	Monitor Type	6	-	-
		6	-	ANALOG OUTPUT
Discontinued F90-103	F90-201	Preset Type	6	6
			6	-
			ANALOG OUTPUT	

FRONT PANEL \& DIP-SWITCH

UL/LL
: Alternate display of upper limit and lower limit value.

SHIFT
: Enter to editing mode and change digit for editing. Display the prescale value. Used for the decimal point positioning.

: Increase the numerical value of the setting digit. Used for the decimal point positioning.
: Decrease the numerical value of the setting digit. Used for the decimal point positioning.

For changing of input type Dip-switch (Black)
: Save the setting.
Display the prescale value.
: Display the up-date time.

EDITING

< PRESCALE VALUE >

For prescale, both multiplier and divider can be set.
The formula on displayed value and the prescale value is the following
Displayed Value $=\frac{\text { Multiplier }}{\text { Divider }} \times$ Number of Input Pulse
For example, in case of fitting the 200 ppr encoder on the roller whose circumference is 50 cm and making the roller's surface speed display at $\mathrm{cm} / \mathrm{min}$, set the multiplier at 50 and divider at 200.

OPERATION	EXPLANATION OF OPERATION	MONITOR TYPE : F90-101, 103	PRESET TYPE : F90-201, 203
ENT $+$ SHIFT	Pres \square key and with \square ENT key pressed. Present prescale value will be displayed. The display returns to measuring mode if \square ent key is pressed or \square key is not pressed within 3 seconds while present prescale value appears.	$\begin{array}{lll} 17 \\ 10 & 10 \\ 10 \end{array} 14 \text { multiplier=1 }$	
SHIFT	Press SHIFT key to enter multiplier editing mode and make the leftmost digit blink.		
\bigcirc	Press \square key 5 times or continue to press to set the leftmost digit to be 5 .		
SHIFT	Press SHIFT key once to make the next digit flash.		
\checkmark	Press \triangle key once to set 0 to this flashing digit		
SHIFT	Press sHift key 6 times or continue to press to shift the flashing digit for editing.	Press SHIFT key while the rightmost digit of the multiplier is flashing. Then, the display will enter divider editing mode and the leftmost digit will blink. 50.0780 \%0\% BRO	
\triangle	Press \triangle key twice to set 2 to this flashing digit.	MJM	
SHIFT	Press sHift key twice to shift flashing digit for editing.	¢ 201	
\checkmark	Press \triangle key once to set 0 to this flashing digit.	M2M5	57. 1808 ロ2~8
ENT	Press ENT key to stop flashing of digit and save the setting. The display returns to measuring mode after 3 seconds automatically or by pressing \square key again.	9204	돕

In case of setting the multiplier to be 00.0000, this means the multiplier is 100.
In case of setting the divider to be 0000, this means the divider is 1.

By setting the up－date time，the display can be renewed at reasonable time without renewing the display in every sampling． For example，if you prefer that display renews every 28 seconds，set 28 for the up－date time．

OPERATION	DESCRIPTION	MONITOR TYPE ：F90－101，103	PRESET TYPE ：F90－201， 203
（1SP	Press $\begin{gathered}\text {（Iss）} \\ \text { crcal }\end{gathered}$ key to display present up－date time． The display returns to measuring mode if \square key is pressed or \square key is not pressed within 3 seconds while present up－date time appears．	H55EL	BH SEE
SHIFT	Press sHfli key to enter editing mode and make the left digit flash．	MH5E5	R85E5
\triangle	Press \triangle key twice to set 2 to this flashing digit．	O15 5E	CH 5EF
SHIFT	Press shlfe key once to shift flashing digit for editing	－1\％5EL	こח5E5
V	Press \triangle key twice to set 8 to this flashing digit	2ロ5EL	2ロ5EF
ENT	Press ENT key to stop flashing of digit and save the setting． The display returns to measuring mode after 3 seconds automatically or by pressing \square key again．	2g 5EL	28 5EE

In case of setting the up－date time to be 00 ，this means the up－date time is equal to the sampling time．
In case of except for 00，the display shows newest measured data every up－date time passed．
But it shows newest measured data at once if the status of upper or lower output is changed by comparing calculation of every sampling time．

＜DECIMAL POINT POSITIONING＞

By using the decimal point positioning function，the display can show up to 4 digits after the decimal point of measured data．
In case of the upper／lower limit type，the decimal point position of preset display shifts automatically corresponding to the decimal point of measuring display．

OPERATION	DESCRIPTION	MONITOR TYPE ：F90－101，103	PRESET TYPE ：F90－201， 203
	Whenever \square SHIFT key is pressed while both \square and \square key are pressed，decimal point shifts and be determined．		

< UPPER / LOWER LIMIT OUTPUT >

F90-201, 202, 203 can set upper lower limit to compare with measured data and to output.
For example, when you need output when measured data is above 180000 and below 9200 , set upper limit for 180000 and lower limit for 9200.

OPERATION	DESCRIPTION	UPPER LIMIT 180000
ULILL	Press UnLL key to display preset upper limit value and to turn the UL lamp.	
SHIFT	Press SHIFT key once to make the leftmost digit flash.	
0	Press \square key once to set this flashing digit for 1.	
SHIFT	Press SHIFT key once to shift flashing digit for editing.	
V	Press \square key twice, to set this flashing of digit for 8 .	
ENT	Press ENT key to stop flashing of digit and to memory the selected numbers.	

OPERATION	DESCRIPTION	$\begin{gathered} \text { UPPER LIMIT } \\ 180000 \\ \hline \end{gathered}$
ULILL	Press UuLL key to display preset lower limit value and to turn the LL lamp.	u uロ I
SHIFT	Press SHHFT key three times to make the 4th digit.	un migicion
	Press \square key 9 times to set this flashing digit for 9 .	$\begin{array}{\|r} \hline \\ \hline \end{array}$
SHIFT	Press \square key once to shift flashing digit for editing.	u uロ
\triangle	Press \square key twice, to set this flashing digit for 2.	
ENT	Press ENT key to stop flashing of digit and to memory the selected numbers.	

Regardless of up-date time, the measured data is compared with the upper/lower limit value in every sampling time.
The upper/lower limit is compared with the displayed data whose number of digits is determined by decimal point positioning function. Digits undisplayed are not included in this comparison.

MEASURED DATA AND COMPARED OUTPUT

Example: Upper Limit $=180000$
Lower Limit = 9200

Upper limit \leqq measured data ; make upper limit output ON and short N. O. and COM of relay (terminal No.(11) and (12)). Upper limit > measured data ; make upper limit output OFF and short N. C. and COM of relay (terminal No.(13) and(12)). Lower limit \geqq measured data ; make lower limit output ON and short N. O. and COM of relay (terminal No.(14) and (15)). Lower limit < measured data ; make lower limit output OFF and short N. C. and COM of relay (terminal No.(16) and (15)).

WIRING AND REAR TERMINALS

Do not use the terminal No. 5, 6, 11~17 of F90-101, 103 and the terminal No. 17 of F90-201, 203
Writing of terminal No. 8, 9,10 for analog output is available for model F90-103, 203 only.

SETTING FOR SAMPLING TIME

The sampling time can be set in the range of the following diagram.

KEY OPERATION

1.

When the display is in the measuring mode, press

$$
\text { ENT key and } \begin{gathered}
\text { Disp } \\
\text { CrCl }
\end{gathered} \text { key at }
$$

the same time

DISPLAY

B SEE

(Existing setting value)

* This value is set to 0 on ex-factory.

NOTE
The cross reference between setting value and sampling time is shown in the table below.
(If the \triangle or \triangle is not pressed within 3 secs, the display returns to the measuring mode automatically.)
3. $\mathrm{ENT} \quad$ M

Press ENT key to save the setting.

The display returns to the measuring mode by pressing ENT key, or 3 sec later automatically.

CROSS REFERENCE BETWEEN SETTING VALUE AND SAMPLING TIME

Setting Value	Sampling Time (seconds)	Minimum Input Frequency (Hz)	Converging Time (seconds)
0	$0.5 \sim 10$	0.1000	$10 \sim 20$
9	$0.5 \sim 9$	0.1112	$9 \sim 18$
8	$0.5 \sim 8$	0.1250	$8 \sim 16$
7	$0.5 \sim 7$	0.1429	$7 \sim 14$
6	$0.5 \sim 6$	0.1667	$6 \sim 12$
5	$0.5 \sim 5$	0.2000	$5 \sim 10$
4	$0.5 \sim 4$	0.2500	$4 \sim 8$
3	$0.5 \sim 3$	0.3334	$3 \sim 6$
2	$0.5 \sim 2$	0.5000	$2 \sim 4$
1	$0.5 \sim 1$	1.0000	$1 \sim 2$

Converging time means the time duration to make the display show 0 after input pulse ends. Shortest converging time is equal to the sampling time and longest one is double of sampling time.

- DIP-SWITCHES

For Input Switch (Black)

Input	No.	SW1	SW2
OW3			
Open Collector Input	OFF	OFF	OFF
Voltage Input	ON	OFF	OFF
Magnetic Sensor Input	ON	ON	OFF
Contact Input	OFF	OFF	ON

For analog output range (Black) F90-103, 203

Range	No.	SW1	SW2	SW3	SW4	Voltage Output
$20 \mathrm{~Hz}-200 \mathrm{~Hz}$	OFF	OFF	ON	ON	$1-10 \mathrm{~V}$ (frequency $\mathrm{Hz} \times 0.05 \mathrm{~V}$)	$5.6-20 \mathrm{~mA}$ (frequency $\mathrm{Hz} \times 0.08 \mathrm{~mA}+4 \mathrm{~mA})$
$20 \mathrm{~Hz}-2 \mathrm{kHz}$	OFF	ON	OFF	OFF	$0.1-10 \mathrm{~V}$ (frequency $\mathrm{Hz} \times 0.005 \mathrm{~V}$)	$4.16-20 \mathrm{~mA}$ (frequency $\mathrm{Hz} \times 0.008 \mathrm{~mA}+4 \mathrm{~mA})$
$200 \mathrm{~Hz}-20 \mathrm{kHz}$	ON	OFF	OFF	OFF	$0.1-10 \mathrm{~V}$ (frequency $\mathrm{Hz} \times 0.0005 \mathrm{~V}$)	$4.16-20 \mathrm{~mA}$ (frequency $\mathrm{Hz} \times 0.0008 \mathrm{~mA}+4 \mathrm{~mA})$

SPECIFICATIONS

Type	Monitor Type	Upper / Lower Limit Preset Type
MODEL (Additional Function)	$\begin{aligned} & \text { F90-101 } \\ & \text { F90-102 (BCD output only) } \\ & \text { F90-103 (ANALOG output only) } \end{aligned}$	$\begin{aligned} & \text { F90-201 } \\ & \text { F90-202 (Upper Limit, Lower Limit and BCD output) } \\ & \text { F90-203 (Upper Limit, Lower Limit and ANALOG output) } \end{aligned}$
Display	Red LED $14.22 \times 7.8 \mathrm{~mm}$	Measuring Display: Red LED $10.0 \times 5.5 \mathrm{~mm}$ Preset Display : Green LED $8.0 \times 4.0 \mathrm{~mm}$
Number of Digits	6	
Display Range	0.0001-999999	
Digits after Decimal Point	Maximum : 4th decimal places	
Scale Range	$0.11 \mathrm{~Hz}-20 \mathrm{KHz}$ (1 pulse / revolut	
Preset Level		Upper / Lower Limit
Measuring Method	1/TAU standard sampling : X'tal $2 \mathrm{MHz} \pm 50 \mathrm{ppm}$	
Measuring Accuracy	$\pm 0.008 \%$ reading ± 1 digit (multiplier $=1.0000$, divider $=1$)	
Sampling Time	0.5-9 seconds (sampling time is changed automatically by pulse interval.)	
Up-date Time	Every sampling or 1-99seconds (maximum)	
Input Signal	Contact input Open collector input Voltage input Magnetic sensor input	$\begin{array}{ll} L: 0-1.9 V & \\ L: 0-1.9 V & H: 3.5-30 V(P-P 3.5 V m i n .) \\ L:-0.6--17 & H: 0.6-17 V \end{array}$
Input Frequency	Contact input Open collector or Voltage input Magnetic sensor input	minimum pulse width $20 \mu \mathrm{sec}$ minimum pulse width $25 \mu \mathrm{sec}$ minimum pulse width $25 \mu \mathrm{sec}$ (L : $-0.6 \mathrm{Vmax} ., \mathrm{H}: 0.6 \mathrm{Vmin}$)
Prescale	Multiplier : 0.0001-100 Divider : 1/1-1/9999 (available to use at the same time)	
Overflow	At every sampling, when the measured data is over 6 digits,"---------------------->-1i is displayed	
Memory	Prescale value, upper/lower limit value and up-date time are reserved for 10years by E2PROM (rewrite 10000 times)	
Keylock	Prescale value, upper/lower limit value (exclude monitor type) and up date time are inhibited to be changed. Contact input • Open collector input (sink current 7mA L: 2Vmax)	
Output Inhibition		Upper / Lower Limit output inhibition Contact input • Open Collector input (sink current 7mA L: 2Vmax)
Upper / Lower Output		Each 1C relay contact (250VAC 0.5A/30VDC 2A ; load)
BCD Output (For type 102, 202)	Parallel open collector negative logic output Each output $30 \mathrm{VDC} / 20 \mathrm{~mA} / 50 \mathrm{~mW}$ max. Output saturation voltage 0.75 V (typ)/20mA Half pitch 36P connector: JAE TX20A-36R-D2LT-A1L Adapt Plague: JAE TX20A-36PH1-D2P1 1m cable accessory	
Analog Output (For type 103, 203)	Frequency voltage converter method Voltage Output: $0.1-10 \mathrm{~V}(1 \mathrm{~K} \Omega \mathrm{~min}$.) $\pm 0.5 \% \mathrm{FS}$ Current Output: 4.16-20mA (500Ω max.) $\pm 0.5 \%$ FS Output Ripple: $20 \mathrm{mVp}-\mathrm{p}$ max. 3 types of range, $20 \mathrm{~Hz}-200 \mathrm{~Hz}$, or $200 \mathrm{~Hz}-2 \mathrm{KHz}, 200 \mathrm{~Hz}-20 \mathrm{KHz}$ can be selected by dip-switches (Select voltage output or current output).	
Sensor Supply Power Source	$12 \mathrm{VDC} \pm 10 \% 100 \mathrm{~mA}$ max. (Analog output is 50 mA maximum)	
Power Supply	100-240VAC -15\% + 10% ($85-264 \mathrm{VAC}$) $50 / 60 \mathrm{~Hz}$	
Power Consumption	Approximately 6VA	
Operating Temperature	$-5-50^{\circ} \mathrm{C}$ (Non freezing)	
Operating Humidity	45-85\% RH (Non condensing)	
Front Panel	IP54 standard	
Weight	Approximately 280g	

DIMENSIONS - MILLIMETERS

